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Abstract—An efficient Gauss–Newton iterative imaging tech-
nique utilizing a three-dimensional (3-D) field solution coupled to
a two-dimensional (2-D) parameter estimation scheme (3-D/2-D)
is presented for microwave tomographic imaging in medical ap-
plications. While electromagnetic wave propagation is described
fully by a 3-D vector field, a 3-D scalar model has been applied
to improve the efficiency of the iterative reconstruction process
with apparently limited reduction in accuracy. In addition, the
image recovery has been restricted to 2-D but is generalizable to
three dimensions. Image artifacts related primarily to 3-D effects
are reduced when compared with results from an entirely two-
dimensional inversion (2-D/2-D). Important advances in terms of
improving algorithmic efficiency include use of a block solver for
computing the field solutions and application of the dual mesh
scheme and adjoint approach for Jacobian construction. Methods
which enhance the image quality such as the log-magnitude/un-
wrapped phase minimization were also applied. Results obtained
from synthetic measurement data show that the new 3-D/2-D
algorithm consistently outperforms its 2-D/2-D counterpart in
terms of reducing the effective imaging slice thickness in both
permittivity and conductivity images over a range of inclusion
sizes and background medium contrasts.

Index Terms—Adjoint method, diffraction tomography,
dual-mesh, Gauss–Newton method, microwave imaging, phase
unwrapping.

I. INTRODUCTION

M ICROWAVE tomographic imaging has posed signifi-
cant promise for medical imaging based on correlations

between tissue electrical properties and clinically important
pathologies. In general, tissue properties range from and

S/m for fat and bone to and S/m for
higher water-content tissue over the low microwave frequency
range (300 to 3000 MHz) [1], [2]. Property variations have
been noted for ischemic versus normal heart muscle [3], normal
versus malignant breast tissue [4], [5], and normal bone versus
leukemic marrow [6]. Additionally, the thermal dependence of
tissue electrical conductivity is well known and may provide
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a means for noninvasively monitoring temperature during
thermal therapies [1], [2], [7], [8]. However, efforts to exploit
these microwave signatures have generally been disappointing
due to limitations in data acquisition and lack of suitable
imaging algorithms which can incorporate the high degree
of three-dimensional (3-D) signal reflection and refraction
associated with scattering from objects that are close in size to
the wavelength of the interrogating wavefronts [9]–[12].

Due to the highly scattering nature of tissue, microwave
radiation cannot be treated with straight-line propagation ap-
proximations as in X-ray computed tomography. In early two-
dimensional (2-D) tomographic implementations, diffraction
approaches were applied to linearize the reconstruction problem
utilizing primarily Born and Rytov approximations [11], [13].
These were appealing at the time because images could be
produced efficiently, given the limited computational power
available. They were shown to be effective when the scattering
objects were electrically small or when the contrast with the
background was minimal [10], which is generally not the case
for imaging of biological tissue.

Iterative approaches are well suited for nonlinear problems,
but can be computationally expensive with respect to the multi-
plicity of field solutions that are required [14]. Numerous itera-
tive methods have been successfully implemented in simulation,
phantom, ex vivo and in vivo experiments to demonstrate the
capabilities of microwave imaging. In simulation, 2-D imaging
schemes have been reported by Joachimowicz et al. [14], Caorsi
et al. [15], Semenov et al. [16] and Meaney et al. [17], among
others. Phantom and ex vivo image reconstruction results have
also been described by Semenov et al. [16], [18] and Meaney
et al. [19], [20]. Preliminary in vivo experiments have been pre-
sented by Semenov et al. [21] for imaging the canine heart and
by Meaney et al. for thermal imaging in the torso of small pigs
[22] and in the human breast [23]. In general, these tomographic
approaches have been found not to be restricted by wavelength
criteria but rather by signal-to-noise limitations [24]. This is
especially important in biomedical applications where the dis-
tance in tissue that a microwave signal can be transmitted is
short and generally decreases as a function of frequency, im-
posing a premium on reducing the operating frequency while at
the same time preserving imaging spatial resolution.

Alternatives to tomographic approaches include confocal
imaging and passive radiometry. The former approach transmits
a broadband pulse from a single antenna within an array and
records the backscattered response [25], [26]. The signals are
synthetically combined to focus sequentially at all points in
the domain to produce a map of return-signal intensity. The
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spatial resolution is nominally related to the bandwidth of the
applied signal pulse. This approach may prove useful in breast
cancer detection where the electrical property contrast between
normal background and malignant tissue is substantial [4], [5].
Passive radiometry has been applied to monitoring thermal
profiles during hyperthermia treatment based on black body
radiation detection [27] where depth resolution improvements
can be achieved by using an increased number of operating
frequencies. This approach is also utilized in breast cancer
detection by sensing subtle temperature elevations related to
the enhanced metabolic activity of tumor cells [28]. The system
by Carr et al. has demonstrated an improved positive predictive
value (the number of women with actual breast cancers with
respect to the total number recommended for biopsy) of 41%
in conjunction with standard mammographic screening versus
24% for mammography alone based on a recent study of 129
women.

While it is clear that electromagnetic field propagation is
3-D, most of the imaging and inverse scattering developments
have been 2-D, largely because of the significant measurement
and computational costs associated with 3-D imaging. Notwith-
standing, it is important to study potential improvements that
may be achieved by using algorithms which account for 3-D
effects [29]. Several investigators have reported their early
experience with 3-D algorithms [14], [21], [30]. While these
efforts have broken important new ground in terms of intro-
ducing 3-D imaging concepts, there is a considerable amount of
work that remains in order to establish 3-D microwave imaging
as the current state-of-the-art. Further, 3-D investigations
are needed to provide insight into the limitations of purely
2-D algorithms which have been more widely disseminated.
The simulation studies reported in this paper represent an
important step toward full 3-D image reconstruction while
also providing a framework for exploring certain innovations
that may lead to a viable near-real-time imaging approach in
the future. Computational strategies employed here include:
1) a 3-D scalar model for the field propagation instead of full
vector representation, 2) a block iterative matrix solver that
efficiently computes the solution to multiple forward problems,
simultaneously, 3) a 2-D parameter reconstruction approach
incorporating the dual mesh scheme, and 4) an adjoint process
to significantly reduce the computational costs of constructing
the Jacobian matrix used to calculate the iterative image param-
eter updates. Utilizing a scalar field propagation model limits
the forward electromagnetic field computational problem to a
manageable size. The multiple right-hand side (RHS) iterative
solver also significantly reduces computational costs along
with the adjoint procedure which greatly decreases the effort
at each iteration and the dual mesh scheme which substantially
minimizes the amount of measured data required to achieve
a successful inversion. To incorporate some of the important
advances resulting from our 2-D studies, certain techniques
such as the log-magnitude/phase minimization have also been
implemented.

The remainder of the paper is organized into a theory and
techniques section (Section II), which provides a summary of
the underlying methodology. This is followed by the results
(Section III), which report and analyze images recovered with

the algorithm for various phantom experiments that are repre-
sentative of cases previously studied with our 2-D algorithms.
Metrics developed in the 2-D studies are applied to the output
of these 3-D reconstructions to assess potential improvements.
The results and innovations of the work are summarized in the
concluding section of the paper (Section IV).

II. THEORY AND TECHNIQUES

The 3-D/2-D microwave imaging technique (3-D field solu-
tion driving 2-D property parameter estimation) is the solution
approach to the inverse scattering problem described in this
section. Here, the forward problem represents the calcula-
tion of the electric field for 1) the current estimate of the
property distribution everywhere, including within the imaging
zone, and 2) the known electromagnetic source configuration.
Conversely, the inverse scattering problem generates the es-
timation of the property distribution in the imaging zone for
a known 1) property distribution outside the imaging region,
2) electromagnetic source configuration and 3) measured elec-
tric field values at selected points. The Helmholtz problem is
the governing equation for computing the interaction of electro-
magnetic fields with tissues and can be solved as a discrete set
of linear algebraic equations. The inverse scattering problem
is inherently nonlinear and best solved by iterative approaches.
In this instance, we have applied a Gauss–Newton algorithm
to reconstruct property estimates from synthetic measured data
where computation of the forward electric field problem at
each iteration is compared with the corresponding measured
values to generate the property updates. In studying the 3-D
imaging problem, algorithmic design choices for both the for-
ward solution and property update procedure at each iteration
are critical in developing a cost effective technique.

A. Forward Problem

Regardless of the approach chosen for computing the for-
ward solution, the computational problem can grow quickly
depending on the physical volume of the imaging domain and
the spatial discretization of the numerical solution. We have
chosen a scalar 3-D finite-element (FE) method as an approxi-
mation to the full vector field form developed by Paulsen et al.
[31] which eliminates numerical parasites associated with 3-D
vector FE approaches. The FE technique is appealing because
the sparse nature of the associated matrix system significantly
reduces the problem size both in terms of memory and CPU
time requirements (assuming an efficient iterative solver is
available). Utilizing the scalar version instead of its vector
form also significantly reduces the problem size while poten-
tially introducing only moderate errors when compared with
the solution computed for all three components. This issue
is briefly investigated by comparing scalar and vector field
solutions in representative cases (See Section III-C). In the
work described here, the cylindrical volume used to compute
the forward solution extends radially beyond the circular array
of driving antennas (oriented vertically) and several layers of
FEs are used above and below the antenna cross-sectional
plane to minimize interactions with finite boundaries resulting
from mesh truncation (Fig. 1). Radiation boundary conditions
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Fig. 1. Schematic of the 3-D/2-D imaging problem—the 2-D reconstruction
area is centered within an array of 16 monopole antennas with the 3-D
cylindrical volume extending radially beyond the antennas and a substantial
distance above and below the 2-D imaging plane.

(RBCs) are applied to those surfaces to accurately represent
unbounded field propagation while facilitating truncation of
the problem to an acceptable size [32].

1) Three-Dimensional Scalar Model: To generate the scalar
model of field propagation used in this paper, we start with
the time-harmonic Maxwell’s equations [assuming time depen-
dence of ]

(1)

(2)

where and are the vector electric and magnetic fields gener-
ated by current density , respectively, is the radian frequency,

is the electric permittivity, is the magnetic permeability and
. In the cases encountered here, is complex with

where is the free space permittivity, is
the relative permittivity, and is the relative imaginary com-
ponent of the permittivity with where is the
electrical conductivity. is equal to (the free space perme-
ability) since biological tissues are not magnetic. Combining (1)
and (2) to eliminate produces

(3)

The vector identity

(4)

along with the relationship

(5)

where is the electric flux density, which can
be expanded to give

(6)

are used to produce

(7)

where is the complex wave number squared.
Two assumptions are applied to simplify (7): 1) the electrical
properties in the forward problem are invariant along the -axis,
i.e., , (This assumption also occurs during
2-D reconstruction), and 2) the radiation field of the -oriented
dipole antennas comprising the imaging array can be reasonably
approximated by TM polarization, i.e., (although
it is important to recognize that the presence of a geometrically
complex object with -axis electrical property variations will
generated non zero transverse field components). The appropri-
ateness of the latter approximation for the present situation is
investigated in Section III. As a result, (7) becomes

(8)

which is the final form of the field propagation model incorpo-
rated into the studies reported here.

The FE method is used to model the electric field distribu-
tion based on (8). Utilizing tetrahedral elements with linear basis
functions, the weak form system of equations can be constructed
by multiplying by a weighting function (Galerkin method), in-
tegrating the product over the entire domain and invoking the
divergence theorem on the Laplacian term to produce

(9)

where is the integration of the product of the two terms over
the entire modeled volume, is the surface of that volume,

are the weighting functions, is the unit normal vector to
the volume surface. By satisfying (9) for the weighting func-
tions associated with all nodes in the 3-D FE mesh, a system of

equations with unknowns (the electric field values at all
nodes) can be constructed and organized in matrix form

(10)

where the coefficients of are comprised of

(11)

and of

(12)

Note that the contribution from the surface integral in (9) is
discussed in the following section. It is important also to note
that contains all of the information pertaining to the elec-
trical property distribution within the modeled zone while
contains all of the source antenna data.

2) Radiation Boundary Conditions: The modeled region
must be truncated at a finite distance to limit the problem size.
However, it is essential that the imposition of boundary condi-
tions (BCs) do not detract from the forward solution accuracy.
Since the imaging experiments we perform are conducted in a
tank filled with a lossy medium which minimizes the effects
of signals reflecting off of the tank and liquid surfaces, RBCs
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Fig. 2. Schematic of (a) the vector from a portion of a single line source
to a boundary element on the cylindrical volume, and (b) the vectors from
multiple antennas simultaneously projected to produce an effective r̂ vector
at the boundary element.

were implemented to mimic the field radiation away from the
imaging zone. The Sommerfeld radiation BC is described by

(13)

on the surface of a 3-D sphere, , with radius where the
sources and scatterers are assumed to be at the center of the
sphere. We apply this to the cylindrical volume with radii com-
puted from the antennas to the volume surface under the as-
sumption that the substantial lossiness of the medium makes this
approximation reasonable. From (13) we get

(14)

where denotes evaluation on the volume surface, , and
is the unit vector in the direction emanating from a point on

the antenna source to (Fig. 2). Equation (9) can then be
re-written as

(15)

Because the antennas are finite length, the direction of at
changes as a function of the section of the antenna that is

referenced. To account for this nonlinear variation in the direc-
tion of , its direction is integrated along the antenna length to
produce an effective , which is used in (15). Fig. 3 shows rel-
ative magnitude electric field contour plots for a single antenna
radiating in a saline medium near a homogeneous breast-shaped
object with a high contrast inclusion. For this heterogeneous re-
gion example, the scattering due to the breast object is appro-
priate but no distortions are discernible due to field interactions
at the mesh truncation boundaries.

Several assumptions have been made in constructing (15) in-
cluding the fact that 1) the imaging volume is a cylindrical in-
stead of a spherical and 2) the sources are not at the geometric
center of the volume. The second assumption has immediate im-
pact on the surface integral term in (15). If is taken as the
unit vector from each individual source corresponding to on
the RHS of (15), matrix will vary for each transmitter. This
has significant computational consequences since (10) must be
solved independently for each source. However, an alternative
approach is to construct the product utilizing the weighted
sum of ’s from all source antennas in the array (even though

Fig. 3. Plots of the electric field magnitude at multiple planes due to a
900-MHz line source radiating into a saline medium with a breast-shaped
object containing a tumor-like inclusion. Schematic of the antenna with respect
to the breast are shown to the right.

TABLE I
AVERAGE 500- AND 900-MHz FORWARD SOLUTION MAGNITUDE (DECIBELS)

AND PHASE (DEGREES) DIFFERENCES FOR SIGNALS COMPUTED AT THE

15 ASSOCIATED RECEIVERS FOR A SINGLE TRANSMITTER

only one is active at a time) [Fig. 2(b)]. In this way, the contri-
bution from the surface integral in (15) becomes independent of
the active antenna, making identical for all sources. Table I
shows a summary of the computed forward electric field mag-
nitude and phase differences at 500 and 900 MHz for a single
transmitter averaged over the associated 15 receiver antennas.
The top half of the table contains the differences in a homoge-
neous saline solution between the numerical case with refer-
enced just to the transmitter and the analytical solution while the
row below lists the differences between the numerical model uti-
lizing the BCs with referenced just to the transmitter (ANT1)
and to the average of the 16 antennas (ANT16), respectively. In
general, the differences between the ANT1 and ANT16 cases
were less than the differences between the ANT1 and the exact
analytical solutions except for the phase at 500 MHz where, in
fact, the ANT16 values were generally closer to the analytical
solution than were the ANT1 results. It should be noted that the
average phase difference for the 900-MHz ANT1 versus ana-
lytical solution is beginning to get relatively large suggesting
that this computation is approaching the upper frequency limit
where the discretization of this particular mesh is sufficient to
generate accurate results. Essentially, this shows that any errors
introduced by moving from the exact analytical solution to that
of the ANT1 BC are more significant than that introduced by
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replacing the ANT1 BCs with the ANT16 BCs. To verify this
in a more complicated situation, we computed the same ANT1
and ANT16 differences for the case where there was a high con-
trast, breast-like object with a tumor inclusion (for details, see
Section III-B) suspended in the saline solution. In general, the
differences were only slightly worse than those for the homo-
geneous case (in the magnitude at 900 MHz, the difference was
actually larger but still much less than the difference for the ho-
mogeneous ANT1 case and exact analytical solution) as would
be expected when computing the fields for a more complex ob-
ject. Implementation of this concept of an effective con-
tribution is essential for facilitating the use of the multiple RHS
implementation of the matrix system solver described in the next
section.

3) Iterative Solver With Multiple Right Hand Sides: In gen-
eral, the matrix in (10) is too large to compute by direct
lower/upper triangular (LU) decomposition but is well suited to
iterative solvers [33], of which the biconjugate gradient (BCG)
and the quasiminimum residual (QMR) methods are two of the
most common. We have focused on the QMR method in this
paper because it has been demonstrated to be superior to the
BCG approach for applications involving large sparse matrices
[34]. A number of strategies can be applied to precondition
in order to cluster its eigenvalues which has the intended conse-
quence of accelerating solution convergence [35]. Possible op-
tions include the incomplete Cholesky and the incomplete LU
(ILU) preconditioners of which the latter was chosen because
of its superior performance [33]. The QMR routine can be im-
plemented in block form utilizing the block Lanczos algorithm
to process multiple RHS vectors of (10), simultaneously. We
performed several studies to determine whether the grouping of
specific RHS vectors along with the block size had any effect on
the solution convergence rate. In general, grouping RHS vectors
corresponding to adjacent antennas provided faster convergence
than when antenna vectors were arranged in random order. In
addition, the size of the block had a significant impact on the
convergence rate. Fig. 4 shows a plot of solution time per RHS
vector versus block size for the configuration in Fig. 2(b) with
10 571 nodes and 54 720 tetrahedral elements. In this case, 16
antennas on a 15-cm-diameter circle in a single plane were used
to generate the source fields. The convergence time per RHS is
minimum at the block size of seven. We generally used a size of
eight as a convenient denominator for organizing the complete
set of antennas with only nominal degradation in solution time.

B. Image Reconstruction

Inversion utilizes a Gauss–Newton iterative approach for
reconstructing permittivity and conductivity maps of a desired
imaging zone. In general, the number of parameters that can
be reconstructed is proportional to the amount of measurement
data—in this case the number of transmit antennas multiplied by
the number of receive antennas associated with each transmitter.
For practical data acquisition systems, this imposes a significant
constraint on the number of reconstruction parameters. We
studied a problem where the property distribution was 2-D,
i.e., the imaging targets were essentially cylinders with uniform
properties in the axial direction (of the modeled volume). We
applied the dual mesh scheme such that the spatial discretization

Fig. 4. Plot of the forward problem computation time per source antenna as
a function of block size (number of right hand sides computed simultaneously)
when the block QMR solver is used.

of the parameter (coarse) mesh was considerably less refined
than that of the 3-D field (fine) mesh. While the fine mesh
is largely defined by the sampling requirements necessary to
maintain accurate field computation, the property variation
within the target can be quite different. This approach is
generalizable to a full 3-D parameter reconstruction to be
developed and evaluated at a later date which will be based
on a 3-D forward/3-D reconstruction mesh pair and demand
more measurement data compatible with an increasing number
of parameters to be estimated. The 2-D reconstruction also
limits problem size and significantly reduces computation time.

Our previous 2-D approach utilized direct differentiation of
the governing field equation for constructing the Jacobian ma-
trix required in the process of updating the property distribu-
tion at each iteration [17], [36]. The approach generates matrix
back-substitutions of (10) for RHSs associated with every re-
construction parameter node for each transmitter, respectively.
However, the principle of reciprocity (electric field value trans-
mitted from antenna A and received at antenna B equals the
value transmitted from B and received at A) can be exploited to
compute each element of the Jacobian matrix through an inner
product of the field distributions due to two antennas (already
calculated as part of the forward solution) with a fixed weighting
vector (the adjoint method [37]) that can be efficiently precom-
puted. This inner product calculation is an operation while
the back-substitutions are , providing a substantial time
savings.

1) Dual Mesh Scheme: In the Gauss–Newton iterative ap-
proach utilized in the 3-D/2-D algorithm, the electrical proper-
ties, (whose distribution is represented over the 2-D parameter
mesh), are updated at each iteration, , by the relationship

(16)

where is the property update and

(17)
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with being the values of at the parameter nodes and
being the set of linear basis functions for the parameter mesh.
Utilizing a truncated Taylor series representation, the electric
field distribution can be expressed as

(18)

where and are the exact and approximated
electric field distributions and is the derivative of
the electric field with respect to the property values. Replacing
the exact term with the measured field quantity, and the approx-
imated value with the computed solution and rearranging yields

(19)

where is the Jacobian matrix. Differentiating (10)
with respect to (value at parameter mesh node ) produces

(20)

which is solved for each parameter node for every antenna
source. and are already determined at each iteration as
part of the field solution for the current property estimate.

The matrix is sparse with terms defined by

(21)

where and are the basis functions on the fine 3-D field
mesh while is the basis function for the coarse 2-D param-
eter mesh. The integrations are performed over the portion of
the 3-D fine mesh where basis function is nonzero (accom-
plished by projecting the 3-D coordinates of and onto the
2-D parameter mesh). For the nonzero contributions in (21), the
efficiency of their calculation is expedited by generating map-
ping relationships between the coordinates and basis functions
of both meshes in a manner similar to that previously reported
[36].

2) Adjoint Method: The expression for the Jacobian matrix
elements can also be written as

(22)

which is the derivative of the electric field with respect to the
electrical properties at node at measurement site, , for radia-
tion source at , where is the Dirac delta function. If the RHS
of (20) is considered to be an effective source, , where

(23)

can be interpreted as the “field distribution”
due to source . If an auxiliary source, , is applied at
the receiver location, the resultant field distribution can
be computed by

(24)

where is the source current at this antenna which can be
rewritten more specifically as

(25)

to emphasize its local support. Reciprocity ensures that

(26)

which in terms of the effective and auxiliary sources and fields
requires that

(27)

or equivalently from (21) and (23), that

(28)

which simplifies to

(29)

The left-hand side of (29) is precisely the term-by-term
definition of the Jacobian matrix given in (22). Note that
the inner product, or weight, is only a function of
the fine and coarse mesh pair and can be precomputed and
stored for later use. Therefore, evaluating the coefficients of the
Jacobian, , involves only an inner product of field distributions
(which are already computed at each iteration) multiplied by
the weight which is an operation compared with the

operation involved with solving for all permutations of
sources, , and reconstruction parameters, . As increases,
computational savings become considerable. Note that (29) is
general and applicable to both 2-D and 3-D reconstruction
problems.

III. RESULTS

We have organized several experiments utilizing simulated
measurement data to demonstrate the viability of the 3-D/2-D
algorithm. While previous implementations of our 2-D scheme
(2-D/2-D) have utilized innovations such as nonactive antenna
compensation [23], [38] and conformal meshing [39], the scope
of the investigations reported here center on computational
efficiency, suitability of convergence behavior and whether
there are improvements over the 2-D/2-D approach with respect
to metrics devised to quantify 3-D wave propagation effects.
Specifically, in Sections III-A and III-B, we have purposely
eliminated the issue of data-model mismatch caused by using
the scalar field approximation through the incorporation of
simulated measurements which were generated by the scalar
model. This synthetic data set also assumed no measurement
noise. The intent of these studies is to highlight the ideal
performance of the inversion algorithm prior to provoking any
image quality degradations resulting from modeling error. In
the spirit of establishing the ideal performance, we computed
the measurement data on the same mesh employed for image
recovery in these simulations. In Section III-C, on the other
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hand, full vector field solutions were produced on a different
high resolution mesh in order to construct the synthetic mea-
surement data for image reconstruction which includes the
effects of scalar model approximation. We also quantify the
differences that can be expected between the 3-D vector and
scalar models under representative conditions at the start of
this section.

For all of the imaging experiments described, the 3-D FE re-
gion is an 18-cm-diameter cylinder with a height of 5 cm com-
prised of 11 uniform layers with a total of 10 571 nodes and
54 720 tetrahedral elements. The circular array (7.1-cm radius)
of 16 antennas (1-cm length) is concentric within the vertical
axis of the cylindrical FE mesh. In each imaging experiment,
16 transmitters were used while signals were received at nine
opposing antennas for a total of 144 measurements. The 2-D
image reconstruction mesh was a 12-cm-diameter circle con-
centric with the cylindrical volume comprised of 126 nodes and
214 triangular elements. For the reconstruction process, a hybrid
regularization procedure combining Tikhonov and
Marquardt ( fixed at 0.1) schemes [40] was used in conjunc-
tion with a spatial filter applied at each iteration to remove high
frequency variations through an averaging factor of 0.1 [40]. In
all cases, the images converged to a stable solution within about
six iterations which required approximately 1 min to execute on
a Compaq Alpha 833-MHz ES40 workstation. By comparison,
the 2-D/2-D algorithm processed a similar image reconstruction
in 30 s for six iterations on the same machine. For the images
presented in Sections III-A and III-B, the background medium
was 0.9% saline ( and S/m) with an operating
frequency of 900 MHz. The experiments in Section III-C uti-
lized a range of backgrounds to illustrate the influence of con-
trast on 3-D effects. All of these reconstructions started from
an initial estimate consisting of the values for the homogeneous
background.

A. Simple Cylindrical Phantom

Fig. 5(a) shows the 900-MHz reconstructed images of a
2.9-cm-diameter cylinder (approximated as a hexagonal shape
best fit to the reconstruction parameter mesh) with
and S/m for a contrast of 1:2 with the background
properties. Both the permittivity and conductivity distributions
are recovered quite well with only minor artifacts appearing
in the conductivity image background. Transects through
both images plotted in Fig. 5(b) illustrate the uniformity of
the background recovery along with the position and size
of the inclusion with respect to the exact distribution (also
shown). It is interesting to note that the recovered properties
underestimate those of the actual object in the center. This may
be a consequence of the spatial filtering which restrains the
algorithm from exactly recovering a property step-distribution
at the object background interface, forcing the algorithm to
compensate for this limitation by exaggerating the properties
in the center of the object.

B. Breast-Like Cylindrical Phantom

Fig. 6(a) shows the 900-MHz permittivity and conductivity
images recovered for a centered breast-like region with an
inclusion. The large 8-cm-diameter cylinder (which is about

Fig. 5. (a) The 900-MHz reconstructed permittivity and conductivity images
for a 2.9-cm-diameter cylinder within a homogeneous saline background, and
(b) the associated property transects through the imaging domain including the
recovered object compared with the actual distributions.

Fig. 6. (a) The 900-MHz reconstructed permittivity and conductivity images
for an 8-cm-diameter breast-like phantom with a 3-cm-diameter inclusion
within a homogeneous saline background, and (b) the associated property
transects through the imaging domain including the recovered breast and
inclusion compared with the actual distributions.

) properties were and S/m while
those for the offset, 3-cm-diameter inclusion were
and S/m. In contrast to the previous example, our
log-magnitude/unwrapped phase minimization was used for
this case because the standard complex form diverged as a
result of the high proportion of measured phase wrapping [41].
The excessive phase wrapping of the scattered fields is directly
related to the target size, contrast and operating frequency.
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Fig. 7. Comparison of the (a) magnitude and (b) phase of the fields at antenna
array measurement sites for the 3-D scalar and vector propagation models in
a homogeneous background and a background containing a spherical object
within the array.

It is important that concepts successfully developed in the
2-D/2-D approach extend to the 3-D/2-D implementation.

From the image pair in Fig. 6, it is clear that the permittivity
component is recovered more accurately than its conductivity
counterpart. For instance, there is a considerably higher level of
artifacts in both the background properties and internal breast
composition for the conductivity image and the reconstructed
breast geometry appears smaller for the conductivity relative
to the permittivity map. These observations are generally con-
sistent with previously reported findings [19]. For the plots of
the recovered properties along the vertical transects through the
phantom [Fig. 6(b)], previous observations are also confirmed
in that both images recover accurate property profiles, although
the permittivity component generally has fewer artifacts. Addi-
tionally, it also appears that the location of the recovered inclu-
sion is correct for the permittivity image while it is noticeably
skewed to one side in the conductivity case. This is again consis-
tent with previously reported images obtained from the 2-D/2-D

Fig. 8. Plots of the slice thickness computed at 900 MHz for the recovered
permittivity and conductivity images using 4.6, 3.6, and 2.5-cm-diameter
spheres (" = 20:0, and � = 0:18 S/m) as a function of background
permittivity (� = 1:78 S/m). Plots are compared with corresponding results
using the 2-D/2-D algorithm.

configuration [39], and is clearly exacerbated by the high con-
trast background.

C. Reduction in 3-D Propagation Effects

Prior to investigating image reconstruction differences
in a 3-D problem between our existing 2-D/2-D algorithm
and the 3-D/2-D approach developed here, we begin this
section by quantifying the differences in the underlying 3-D
scalar model of field propagation with its more appropriate
3-D vector version under two representative conditions—a
homogeneous imaging volume and an heterogeneous volume.
Fig. 7 shows field values computed for the 3-D scalar and
full vector models at the imaging array antenna sites under
500-MHz illumination of a homogenous and heterogeneous
volume. In the homogeneous case, a background medium with

and S/m was used while in the heterogeneous
problem this same background included an off-centered sphere
( cm, cm offset from the center of the antenna
array) with and S/m. The solutions illustrated
in Fig. 9 result in mean amplitude differences of about 0.4%
and 1.2% in the homogeneous and heterogeneous problems
respectively and a mean difference of 1.5 and 5.4 in phase
in the two cases.

A previous study based on the 2-D/2-D algorithm presented
results utilizing a metric to estimate the imaging slice thick-
ness [29] in order to quantify imaging artifacts due to 3-D
field propagation effects. We present data here which directly
compares the 3-D/2-D and 2-D/2-D algorithms in terms of this
measure. The simulated scattered data was computed using a
full FE 3-D vector formulation [31], [42] at 900 MHz. The
study involved raising low permittivity spheres of different
diameters through the imaging plane defined by the array of
monopole antennas. Permittivity and conductivity images were
recovered for each sphere (large: 4.6-cm diameter, about ;
medium: 3.6-cm diameter about ; small: 2.5-cm diameter,
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Fig. 9. (a) Plots of the reconstructed conductivity for the large sphere (4.6-cm
diameter) in background " = 60 at 900 MHz by 3-D/2-D and 2-D/2-D
methods, (b) transects of the reconstructed conductivity profiles together with
the true value of the distribution.

about ) at each vertical position separated in 1.27-cm-incre-
ments. The electrical properties of the spheres were
and S/m while the relative permittivity of the back-
ground varied from 30 to 70 with the conductivity fixed at
1.78 S/m. As an indication of averaging effect along the -axis
due to 3-D microwave propagation, imaging slice thicknesses
derived from the recovered sphere half width and peak values of
its estimated properties (see Meaney et al. [29] for a complete
definition) were computed for both the permittivity and con-
ductivity, for all three spheres and over the complete range of
background permittivities, respectively. Fig. 8 compares plots
of the imaging slice thickness as a function of background
permittivity for both the 2-D/2-D and 3-D/2-D algorithms.
For almost all cases, the slice thickness for the 3-D/2-D al-
gorithm is smaller. In general, the slice thickness is greater
for larger sized spheres and the permittivity slice thickness is
smaller than in the corresponding conductivity images. The
conductivity thickness decreases consistently for both algo-
rithms and appears to converge to similar values for the lowest
background permittivity. The permittivity thicknesses for the
2-D/2-D algorithm are relatively flat as a function of back-
ground permittivity—decreasing slightly for the large sphere
and increasing slightly for the two smaller spheres. In contrast,
the permittivity thicknesses for the 3-D/2-D cases consistently
decrease with respect to a lower background permittivity. In
general, both algorithms demonstrate improvement in reducing

the imaging slice thicknesses with reduced background contrast,
where the 3-D/2-D algorithm produces consistently smaller
values and is generally better at handling larger targets. As a
visual example of the 3-D/2-D algorithm enhancement in a
representative case, Fig. 9 shows a pair of conductivity im-
ages obtained from the reconstructions of the large sphere
with the antenna array positioned in the azimuthal plane by
the two methods. The improvement is evident in terms of the
sharper and more accurate contrast with the background that
is achieved with the 3-D/2-D method.

IV. CONCLUSION

We have implemented a 3-D scalar field solution/2-D
Gauss–Newton iterative parameter inversion algorithm
(3-D/2-D) for microwave imaging. Various strategies including
exploitation of a 3-D scalar formulation and a truncated mesh
with RBCs were deployed to limit the computational overhead
of the problem. Additionally, as an important initial step, we
developed a 2-D reconstruction procedure that is integrated
with the 3-D field solution. This is significant in a practical
sense because measurement data is a precious commodity
and the number of parameters that can be independently
estimated is proportional to the amount of measurement data
which is available. Restricting the parameter reconstruction
to 2-D allows this new algorithm to be applied to the limited
microwave signal channels now in place [23]. However, it
is also important because the 2-D inversion portion of the
algorithm has been developed to readily generalize to a full
3-D reconstruction when the requisite amount of measurement
data can be acquired. Implementation of the adjoint method to
dramatically accelerate computation of the Jacobian matrix has
made 3-D approaches much more attainable.

The range of results presented here demonstrate the capabil-
ities of the 3-D/2-D algorithm in a variety of settings—specif-
ically in a simple 2-D cylinder and a more complex, large,
breast-like cylindrical geometry. In addition, a full set of exper-
iments were performed to illustrate that the 3-D/2-D algorithm
is an overall improvement over the 2-D/2-D algorithm in terms
of reducing previously observed 3-D artifacts. In general, these
results are encouraging and set the stage for development of
more advanced 3-D/3-D methods to be used in conjunction
with more sophisticated data acquisition systems.
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